An upper bound for the Laguerre polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An upper bound to the second Hankel functional for the class of gamma-starlike functions

‎The objective of this paper is to obtain an upper bound to the second Hankel determinant $|a_{2}a_{4}-a_{3}^{2}|$‎ ‎for the function $f$‎, ‎belonging to the class of Gamma-starlike functions‎, ‎using Toeplitz determinants‎. ‎The result presented here include‎ ‎two known results as their special cases‎.  

متن کامل

An Upper Bound on the First Zagreb Index in Trees

In this paper we give sharp upper bounds on the Zagreb indices and characterize all trees achieving equality in these bounds. Also, we give lower bound on first Zagreb coindex of trees.

متن کامل

An upper bound for the regularity of powers of edge ideals

‎A recent result due to Ha and Van Tuyl proved that the Castelnuovo-Mumford regularity of the quotient ring $R/I(G)$ is at most matching number of $G$‎, ‎denoted by match$(G)$‎. ‎In this paper‎, ‎we provide a generalization of this result for powers of edge ideals‎. ‎More precisely‎, ‎we show that for every graph $G$ and every $sgeq 1$‎, ‎$${rm reg}( R‎/ ‎I(G)^{s})leq (2s-1) |E(G)|^{s-1} {rm ma...

متن کامل

Upper Bound for the Coefficients of Chromatic polynomials

This paper describes an improvement in the upper bound for the magnitude of a coefficient of a term in the chromatic polynomial of a general graph. If ar is the coefficient of the q r term in the chromatic polynomial P (G, q), where q is the number of colors, then we find ar ≤ ( e v−r ) − ( e−g+2 v−r−g+2 ) + ( e−kg−g+2 v−r−g+2 ) − ∑kg−lg n=1 ∑lg−1 m=1 ( e−g+1−n−m v−r−g ) − δg,3 ∑kg+l ∗ g+1 −lg ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 1998

ISSN: 0377-0427

DOI: 10.1016/s0377-0427(98)00181-2